Miêu tả Lực

Hình vẽ minh họa một khối trượt trên một mặt phẳng và mặt phẳng nghiêng. Lực được phân tích và cộng lại nhằm xác định độ lớn của chúng cũng như của hợp lực.

Do cách nhận thức lực thông qua những tác dụng như đẩy hoặc kéo, điều này mang lại cách hiểu trực giác khi miêu tả lực.[4] Như những khái niệm vật lý khác (ví dụ nhiệt độ), cách hiểu trực giác về lực được lượng hóa nhờ sử dụng định nghĩa miêu tả chính xác (operational definition) mà nó nhất quán trực tiếp với kết quả quan sát và phạm vi đo tiêu chuẩn. Thông qua thí nghiệm, các nhà vật lý xác định được rằng lực đo trong phòng thí nghiệm là hoàn toàn thống nhất với lực định nghĩa trong cơ học Newton.

Lực tác dụng theo một hướng cụ thể với độ lớn phụ thuộc vào sự kéo hay đẩy đi mạnh bao nhiêu. Bởi những đặc tính này, lực được phân loại thành đại lượng "vectơ". Điều này có nghĩa rằng lực tuân theo một bộ các quy tắc toán học khác với các đại lượng vật lý không có hướng (đại lượng vô hướng). Ví dụ, khi xác định kết quả của hai lực tác dụng lên cùng một vật, cần phải biết rõ độ lớn và hướng của từng lực nhằm tính toán ra hợp lực. Chỉ cần thiếu một trong hai thông tin này ở mỗi lực thì tình huống sẽ trở lên mập mờ. Như nếu bạn biết hai người đang kéo cùng một sợi dây mà đã biết độ lớn lực kéo nhưng bạn lại không biết mỗi người kéo theo hướng nào, thì bạn sẽ không thể xác định được gia tốc của sợi dây là bao nhiêu. Hai người có thể kéo theo hai hướng ngược nhau như trong trò kéo co hoặc hai người cùng kéo về một hướng. Trong ví dụ một chiều đơn giản này, nếu không biết hướng của lực thì sẽ không thể biết được tổng hợp lực là kết quả của việc cộng hay trừ độ lớn của hai lực. Lực gắn với khái niệm vectơ cho phép tránh được những khó khăn này.

Quy tắc hình bình hành cộng vectơ.

Về mặt lịch sử, các nhà khoa học nghiên cứu lực trong điều kiện cân bằng tĩnh đầu tiên khi ấy một vài lực có thể triệt tiêu lẫn nhau. Các thí nghiệm này minh hóa tính chất quan trọng của lực đó là đại lượng vectơ cộng được: chúng có độ lớn và hướng.[4] Khi hai lực tác dụng vào cùng một hạt điểm, lực kết quả, hợp lực (hoặc tổng hợp lực), sẽ được xác định tuân theo quy tắc hình bình hành của phép cộng vectơ: mỗi lực được biểu thị bằng với 2 cạnh chung đỉnh của hình bình hành, và hợp lực chính bằng vectơ với độ lớn bằng đường chéo của hình bình hành và hướng dọc theo cạnh đó.[1][3] Độ lớn của hợp lực phụ thuộc vào góc hợp bởi hai lực cũng như độ lớn của mỗi lực thành phần. Nếu hai lực tác dụng lên một vật, quy tắc hình bình hành chỉ áp dụng được khi đường kéo dài hai lực cắt nhau.

Biểu đồ lực là một cách thuận tiện nhằm thu được lực tổng hợp. Về mặt lý thuyết, các biểu đồ này được vẽ với bảo tồn góc và độ lớn tương đối của các vectơ lực sao cho có thể thực hiện được phép cộng hình học vectơ.[17]

Không những cộng được, lực cũng có thể phân tích thành các lực thành phần mà từng cặp vuông góc với nhau. Một lực chỉ theo hướng đông bắc có thể phân tích thành hai lực, một lực chỉ theo hướng bắc còn lực kia chỉ theo hướng đông. Tổng của hai lực thành phần này tuân theo phép cộng vectơ sẽ thu được lực ban đầu. Việc phân tích vectơ lực theo hệ các vectơ cơ sở thường là một phương pháp toán học rõ ràng nhằm miêu tả lực hơn là miêu tả nó bằng độ lớn và hướng.[18] Điều này là do, đối với các thành phần trực giao, các thành phần của vectơ tổng được xác định một cách duy nhất bằng cách cộng các độ lớn của từng các vectơ riêng rẽ. Các thành phần trực giao là độc lập với nhau do lực tác dụng theo hướng 90° sẽ không có ảnh hưởng đến lực vuông góc với nó. Việc chọn bộ các vectơ cơ sở trực giao sao cho để việc thực hiện các phép toán là thuận tiện nhất. Cách hay gặp là chọn cơ sở vectơ theo cùng hướng với một trong những lực cần phân tích, do lực đó sẽ chỉ có một thành phần khác 0 theo hệ cơ sở đó. Các vectơ lực trực giao có thể là một bộ ba trong không gian 3 chiều, với mỗi cặp vectơ cơ sở trực giao với nhau.[1][3]

Cân bằng

Cân bằng cơ học xuất hiện khi hợp lực tác dụng lên một điểm bằng 0 (hay tổng các vectơ lực bằng 0). Khi mở rộng sang cho vật thực, cần thêm một điều kiện nữa là tổng mô men lực cũng phải bằng 0.

Có hai loại cân bằng là cân bằng tĩnhcân bằng động.

Trạng thái cân bằng

Bài chi tiết: Tĩnh học

Các nhà khoa học hiểu khá tốt về trạng thái cân bằng tĩnh trước khi cơ học cổ điển ra đời. Các vật đứng yên sẽ có tổng hợp lực tác dụng lên nó bằng 0.[19]

Trường hợp đơn giản nhất của cân bằng tĩnh là khi hai lực có độ lớn bằng nhau nhưng ngược hướng nhau tác dụng tại một điểm. Ví dụ, một vật nằm trên mặt phẳng bị kéo (hút) về tâm Trái Đất bởi lực hấp dẫn. Cùng lúc đó, lực bề mặt chống lại bằng một lực hướng lên trên (còn gọi là lực pháp tuyến). Kết quả là hợp lực bằng 0 và vật không chịu sự gia tốc.[4]

Trường hợp đẩy hay kéo một vật có tính tới ma sát bề mặt khiến cho vật không di chuyển được bởi vì lực tác dụng vào bị chống lại bởi ma sát tĩnh (hay ma sát nghỉ), tạo ra giữa vật và bề mặt nó nằm lên. Khi vật không di chuyển, lực ma sát tĩnh cân bằng chính xác với lực tác dụng và hợp lực bằng 0. Ma sát tĩnh tăng hoặc giảm nhằm đáp ứng lại lực tác dụng vào cho tới một giới hạn trên xác định bởi đặc tính của bề mặt tiếp xúc và vật thể đó.[4]

Ứng dụng cân bằng tĩnh giữa hai lực là một cách thông dụng nhất nhằm đo lực, sử dụng các thiết bị đơn giản như cân trọng lượng (weighing scales) và cân lò xo. Ví dụ, một vật treo lên một cân lò xo thẳng đứng sẽ chịu tác dụng của lực hấp dẫn và một lực cân bằng do sự đàn hồi của lò xo mà tỷ lệ với trọng lượng của vật. Sử dụng những công cụ này, một số định luật liên quan đến lực đã được khám phá: lực hấp dẫn tỉ lệ với thể tích vật chiếm chỗ trong chất lỏng hay định luật Archimedes; nguyên lý đòn bẩy của Archimedes; định luật Boyle-Mariotte cho áp suất khí; và định luật Hooke đối với lò xo. Tất cả đều được khám phá và xác nhận bằng thí nghiệm trước khi Newton nêu ra ba định luật về chuyển động của ông.[1][3][4]

Động lực học

Bài chi tiết: Động lực học
Galileo Galilei là người đầu tiên chỉ ra những mâu thuẫn trong các lập luận của Aristotle về lực.

Galileo là người đầu tiên miêu tả về cân bằng động học khi ông nhận thấy rằng một số giả sử của Aristotel mâu thuẫn với quan sát và tính logic. Galileo nhận thấy rằng phép cộng vận tốc đơn giản dẫn đến đòi hỏi một "hệ quy chiếu đứng yên tuyệt đối" là không cần thiết. Ông kết luận rằng trạng thái chuyển động đều hoàn toàn tương đương với trạng thái đứng yên. Điều này mâu thuẫn với khái niệm của Aristotle về "trạng thái tự nhiên" của sự đứng yên mà các vật với khối lượng sẽ cuối cùng đạt đến một cách tự nhiên. Các thí nghiệm đơn giản chứng tỏ rằng nhận thức của Galileo về sự tương đương giữa chuyển động đều và trạng thái đứng yên là đúng đắn. Ví dụ, nếu một người đứng trên con thuyền đi với vận tốc không đổi và thả rơi một quả bóng, khi ấy Aristotel cho rằng quả bóng sẽ rơi về phía sau người đó khi con thuyền tiến về phía trước. Tuy nhiên, thực tế thì quả bóng vẫn rơi đúng tại chân người đó hệt như khi người đó đứng yên trên mặt đất. Do không có lực tác dụng theo phương ngang nào khi quả bóng rơi, chỉ có thể kết luận rằng quả bóng tiếp tục di chuyển với cùng vận tốc như con thuyền khi nó rơi. Do vậy không cần một lực nào để duy trì quả bóng di chuyển với cùng vận tốc của con thuyền về phía trước.[20]

Hơn nữa bất kỳ vật nào chuyển động với vận tốc đều thì hợp lực tác dụng vào nó phải bằng 0. Đây chính là định nghĩa của cân bằng động: khi mọi lực tác dụng lên một vật sẽ cân bằng sao cho vật đó vẫn chuyển động với vận tốc không đổi.

Một trường hợp đơn giản của cân bằng động đó là vật chuyển động đều trên bề mặt với ma sát động. Trong trường hợp này, lực tác dụng theo hướng chuyển động trong khi lực ma sát động tác dụng theo hướng ngược lại. Kết quả là tổng hợp lực bằng 0, nhưng do từ đầu vật chuyển động với vận tốc không đổi, do vậy vật tiếp tục di chuyển với vận tốc đều đó. Aristotle đã hiểu sai về chuyển động đều khi không nhận ra được sự có mặt của ma sát động giữa các bề mặt.[1][3]

Biểu đồ Feynman

Bài chi tiết: Biểu đồ Feynman
Biểu đồ Feynman cho quá trình phân rã của neutron thành một proton. Hạt boson W nằm giữa hai đỉnh minh họa một lực đẩy.

Trong vật lý hạt hiện đại, lực và sự gia tốc của các hạt được giải thích như là sản phẩm toán học của sự trao đổi các boson gauge mang động lượng. Cùng với sự phát triển của lý thuyết trường lượng tửthuyết tương đối rộng, các nhà vật lý nhận ra rằng lực một khái niệm phái sinh từ định luật bảo toàn động lượng (4-động lượng trong thuyết tương đối và động lượng của các hạt ảo trong điện động lực học lượng tử). Sự bảo toàn động lượng, mà có thể suy trực tiếp từ tính đối xứng đồng nhất của không gian và thường được coi là khái niệm cơ bản hơn khái niệm lực. Do vậy tên gọi các "lực cơ bản" được các nhà vật lý gọi lại một cách chính xác hơn là "tương tác cơ bản".[6]:199–128 Khi hạt A phát (tạo ra) hoặc hấp thụ (hủy) hạt ảo B, hạt A sẽ bị giật lùi do hệ quả của định luật bảo toàn động lượng dẫn đến sự liên tưởng là hạt A bị hút hoặc đẩy bằng cách trao đổi thông qua hạt B. Cách miêu tả này áp dụng đối với mọi lực trong tương tác cơ bản. Trong khi cần có những miêu tả bằng toán học phức tạp về các tương tác này một cách chi tiết và cho kết quả chính xác, có một cách dễ hình dung nhằm minh họa các tương tác cơ bản thông qua biểu đồ Feynman. Trong biểu đồ Feynman, mỗi hạt vật chất được biểu diễn bằng một đường thẳng (xem tuyến thế giới (world line)) di chuyển trong không thời gian theo hướng đi lên hoặc chếch sang phải trong biểu đồ. Vật chất và phản vật chất là giống nhau ngoại trừ hướng lan truyền của chúng trên biểu đồ Feynman. Các tuyến thế giới của các hạt cắt nhau tại các đỉnh, và biểu đồ Feynman thể hiện lực xuất hiện từ một tương tác tại mỗi đỉnh thông qua sự thay đổi tức thì trong hướng của tuyến thế giới của hạt. Các boson gauge phát ra từ đỉnh dưới dạng đường lượn sóng, và trong trường hợp trao đổi hạt ảo, chúng bị hấp thụ tại đỉnh kế tiếp.[21]

Tính hữu dụng của biểu đồ Feynman ở chỗ các hiện tượng vật lý khác trong bức tranh chung của tương tác cơ bản nhưng về mặt khái niệm khác hẳn với khái niệm lực vẫn được miêu tả trong cùng các quy tắc của biểu đồ. Ví dụ, biểu đồ Feynman có thể miêu tả súc tích một cách chi tiết tiến trình một hạt neutron phân rã thành một electron, proton, và phản neutrino electron, tương tác được truyền bởi cùng boson gauge của tương tác yếu.[22]

Tài liệu tham khảo

WikiPedia: Lực http://www.anu.edu.au/Physics/Searle/Obsolete/Semi... http://eta.physics.uoguelph.ca/tutorials/fbd/intro... http://www.algorithm.com/inwit/writings/coriolisfo... http://www.britannica.com/EBchecked/topic/213059 http://books.google.com/?id=CQNE13opFucC http://books.google.com/books?id=CQNE13opFucC&pg=P... http://www.nature.com/nature/journal/v208/n5007/ab... http://www.physicspost.com/science-article-168.htm... http://aleph.nkp.cz/F/?func=find-c&local_base=aut&... http://www.lorenz-messtechnik.de/english/company/f...